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Summary

Current methods of determining the rotational diffusion tensors of proteins in solution by NMR
spectroscopy exclusively utilize relaxation rate constants for backbone amide 15N spins. However, the
distributions of orientations of N-H bond vectors are not isotropic in many proteins, and correlations
between bond vector orientations reduce the accuracy and precision of rotational diffusion tensors
extracted from 15N spin relaxation data. The inclusion of both 13Cα and 15N spin relaxation rate con-
stants increases the robustness of the diffusion tensor analysis because the orientations of the Cα-Hα

bond vectors differ from the orientations of the N-H bond vectors. Theoretical and experimental results
for calbindin D9k, granulocyte colony stimulating factor, and ubiquitin, three proteins with different
distributions of N-H and Cα-Hα bond vectors, are used to illustrate the advantages of the simultaneous
utilization of 13Cα and 15N relaxation data.

Introduction

NMR spectroscopy is sensitive to motional processes
in molecules through the phenomenon of nuclear spin
relaxation. Intramolecular motions in proteins are amen-
able to investigation by use of 15N, 13C, and 2H spin relax-
ation (Palmer et al., 1996). Typically, relaxation data are
analyzed by modeling the power spectral density function
with the model-free (Lipari and Szabo, 1982a,b) or spec-
tral density mapping formalisms (Peng and Wagner, 1992;
Farrow et al., 1995; Ishima and Nagayama, 1995). The
majority of these studies concern approximately spherical
globular proteins and isotropic overall rotational diffusion
has been assumed. Rotational diffusion anisotropy has a
profound effect on the physics of spin relaxation and on
the interpretation of experimental studies of intramolecu-
lar dynamics because the power spectral density function
depends on the relative orientations of the principal axis
systems of the operant relaxation mechanisms and the
diffusion tensor (Woessner, 1962). Consequently, an ex-
perimental knowledge of the rotational diffusion tensor is

essential for a detailed analysis of intramolecular motions
in nonspherical proteins. In addition, experimental inves-
tigations of rotational diffusion anisotropy can provide
information on the conformations of multidomain pro-
teins and can monitor alterations in the hydrodynamic
properties of proteins following ligation or allosteric
conformational changes (Brüschweiler et al., 1995).

Rotational diffusion anisotropies for several proteins
have been determined from 15N relaxation measurements
(Brüschweiler et al., 1995; Tjandra et al., 1995; Zheng et
al., 1995; Mackay et al., 1996). Two methods of deter-
mining the diffusion tensor have emerged: direct fitting of
the R2/R1 ratios for a set of nuclear spins, in which R1 is
the spin-lattice relaxation rate constant and R2 is the
spin-spin relaxation rate constant (Tjandra et al., 1995;
Zheng et al., 1995); and analysis of local diffusion coeffi-
cients that are derived in turn from relaxation rate con-
stants (Brüschweiler et al., 1995). However, due to the
constraints imposed by hydrogen bonding in secondary
structures, the orientations of the N-H bond vectors are
not distributed isotropically in many proteins. Correla-
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tions between the orientations of the N-H bond vectors
compromise the accuracy and precision of the diffusion
tensor derived from NMR relaxation measurements.

The present paper demonstrates that simultaneous
analysis of 13Cα and 15N relaxation rate constants improves
the reliability of the diffusion tensor determination, both
because the distribution of the orientations of bond vec-
tors is more ideal and because the quantity of data is
increased. Representation of the local diffusion constants
in quadratic form (Brüschweiler et al., 1995) is convenient
for simultaneous analysis of relaxation data acquired for
multiple nuclear species or magnetic field strengths. Addi-
tional results concerning this formalism are provided, and
simple relationships diagnostic of the distribution of bond
vector orientations are derived. Relaxation data for cal-
bindin D9k (Kördel et al., 1992), granulocyte colony stim-
ulating factor (G-CSF) (Zink et al., 1994), and ubiquitin
(Tjandra et al., 1995), three proteins with distinct distri-
butions of bond vector orientations, are analyzed to illus-
trate the approach empirically and theoretically.

Theory

Rate constants for spin-lattice relaxation (R1), spin-
spin relaxation (R2), and dipolar cross-relaxation (σ) can
be determined for backbone 13Cα or 15N spins in proteins
by using standard inverse-detected multidimensional NMR
experiments (Skelton et al., 1993; Farrow et al., 1994).
The relaxation rate constants for the ith 13Cα or 15N spin
are given by (Abragam, 1961)

R1i = qDD{Ji(ωX−ωH) + 3Ji(ωX) + 6Ji(ωX+ωH)}
+ qCSAJi(ωX)

R2i = (1/2)qDD{4Ji(0) + Ji(ωX−ωH) + 3Ji(ωX)

+ 6Ji(ωH) + 6Ji(ωX+ωH)} (1)

+ (1/6)qCSA{4Ji(0) + 3Ji(ωX)}

σi = qDD{6Ji(ωX+ωH) − Ji(ωX−ωH)}
= (γX/γH)(NOE −1)R1

where qDD = (1/10)(µ0/4π)2h2γ 2
Xγ 2

Hr−6
XH; qCSA = (2/15)ω2

X∆σ2; µ0

is the permeability of free space; h is Planck’s constant
divided by 2π; ωX and ωH are the Larmor frequencies of
the X (X = 13Cα or 15N) and 1H spins, respectively; γX and
γH are the gyromagnetic ratios of the X and 1H spins,
respectively; rXH is the internuclear N-H or Cα-Hα dis-
tance; ∆σ is the chemical shift anisotropy of the X spin;
and NOE is the {1H}-X steady-state nuclear Overhauser
effect. The principal axes of the chemical shift tensors for
15N and 13Cα spins are oriented nearly collinearly with the
N-H and Cα-Hα bond vectors, respectively. The spectral
density function, Ji(ω), can be expressed as the cosine
transform of the correlation function of the normalized
X-H bond vector (Abragam, 1961):

Ji(ω) = P2[µi(0)·µi(τ)] cos(ωτ) dτ (2)⌡
⌠
∞

0

where P2(x) = (3x2−1)/2, µi(t) is a unit vector along the X-
H bond vector at time t, and … indicates an ensemble
average.

For bond vectors subject only to low-amplitude, rapid
intramolecular motions, the R2i/R1i ratio is approximately
independent of intramolecular dynamics and is given by
(Kay et al., 1989; Tjandra et al., 1995; Zheng et al., 1995)

R2i/R1i = {4Ji(0) + Ji(ωX−ωH) + 3Ji(ωX) + 6Ji(ωH)

+ 6Ji(ωX+ωH) + (qCSA/3qDD)[4Ji(0) + 3Ji(ωX)]} /

{2Ji(ωX−ωH) + 6Ji(ωX) + 12Ji(ωX+ωH)
(3)

+ 2(qCSA/qDD)Ji(ωX)}

where Ji(ω) is the spectral density function for overall
rotational diffusion. For an asymmetric top with an an-
isotropic diffusion tensor (Woessner, 1962),
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where Dxx, Dyy, and Dzz are the principal values of the dif-
fusion tensor D, Diso = Trace{D}/3 = (Dxx+Dyy+Dzz)/3, L2 =
(DxxDyy+DxxDzz+DyyDzz)/3, δk = (Dkk−Diso)/(D

2
iso−L2)1/2 (for

k = x,y,z), and ei = (xi,yi,zi) are the direction cosines defin-
ing the orientation of the ith X-H bond vector in the
principal axis frame of the diffusion tensor. For a sym-
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metric top with an axially symmetric diffusion tensor,
D⊥ = Dxx = Dyy and D|| = Dzz are the two unique diffusion
coefficients, Diso = (D|| + 2D⊥)/3, and (Woessner, 1962)
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where τ1
−1 = 6D⊥, τ2

−1 = 5D⊥ + D||, τ3
−1 = 2D⊥ + 4D||, A1i =

(3cos2θi −1)2/4, A2i = 3sin2θi cos2θi, A3i = (3/4)sin4θi, and θi

is the angle between the X-H bond for the ith spin and
the unique axis of the principal frame of the diffusion
tensor. For a spherical top with an isotropic diffusion
tensor, Diso = Dxx = Dyy = Dzz is the isotropic diffusion con-
stant, and (Woessner, 1962)
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where τc = (6Diso)
−1. As shown, Ji(ω) is independent of the

orientation of the X-H bond vector.
An experimental data set consists of relaxation rate

constants, R1i and R2i, and the direction cosines, ei, for i =
1 to N spins. The direction cosines are derived from the
coordinates of the X-H bond vector in an arbitrary mo-
lecular reference frame (usually determined by the co-
ordinate frame of a molecular model of the protein as
determined by X-ray crystallography or NMR spectro-
scopy). The molecular frame does not normally coincide
with the principal axis frame of the diffusion tensor
(other than for the isotropic model), and a coordinate
transformation between the two frames must be executed.
For the axially symmetric model, the angles θ and φ
define the orientation of the unique axis of the diffusion
tensor frame relative to the arbitrary molecular frame.
For the anisotropic model, the Euler angles, θ, φ, and ψ,
define the orientation of the diffusion tensor frame rela-
tive to the arbitrary molecular frame. Equation 3 can be
solved directly by nonlinear least-squares optimization to
determine Diso for the isotropic model; D⊥, D||, θ, and φ
for the axially symmetric model; and Dxx, Dyy, Dzz, θ, φ,
and ψ for the anisotropic model (or appropriate combina-
tions of these variables) (Tjandra et al., 1995; Zheng et
al., 1995). A χ2 variable is defined to statistically evaluate
the goodness-of-fit of the diffusion models and an F-
statistic is used to discriminate between isotropic, axially
symmetric, and anisotropic models (vide infra).

Alternatively, a local diffusion constant, Di = (6τci)
−1, is

defined for the ith spin for i = 1,...,N by fitting the iso-
tropic diffusion model individually to each R2i/R1i ratio
using Eqs. 3 and 8 or by fitting the Lipari–Szabo model-
free spectral density function (Lipari and Szabo, 1982a,b)
to the experimental R1i, R2i, and σi data (Brüschweiler et
al., 1995). Local diffusion constants have been used to
characterize qualitatively motional anisotropy in calmo-
dulin (Barbato et al., 1992) and to approximate the de-

gree of rotational anisotropy in proteins (Schurr et al.,
1994). A quantitative treatment was provided by Brüsch-
weiler et al. (1995), who stated that, for small anisotropies
of the diffusion tensor D, the Di have a quadratic form in
an arbitrary reference frame:

Di = ei
TQei (9)

where Q = (3DisoE−D)/2 and E is the identity tensor. In
the principal frame of the diffusion tensor, = AQA−1 isQ̃
diagonal with elements Qxx = (Dyy+Dzz)/2, Qyy = (Dxx+Dzz)/2
and Qzz = (Dxx+Dyy)/2 and A is the unitary transformation
matrix that diagonalizes D and rotates the arbitrary refer-
ence frame to the diffusion reference frame (i.e. i = Aei).ẽ
Whereas (6Dkk)

−1 is the time constant for rotational diffu-
sion around the kth principal axis, (6Qkk)

−1 is the average
time constant for rotational diffusion of the kth principal
axis. For an asymmetric top, Eq. 9 expands to

Di = Q11xi
2 + Q22yi

2 + Q33zi
2

+ 2Q12xiyi + 2Q13xizi + 2Q23yizi

(10)

As described by Brüschweiler et al. (1995), Eq. 10 is
solved by standard linear least-squares optimization for
Qjk; the resulting tensor Q is diagonalized to determine
the eigenvalues Qxx, Qyy and Qzz and the transformation
matrix A; the diffusion constants, Dxx, Dyy, and Dzz, are
determined from the eigenvalues; and θ, φ, and ψ are
determined from A. For a symmetric top, Eq. 9 reduces to

Di = (D⊥+D||) / 2 + (D⊥−D||)(a31xi+a32yi+a33zi)
2 / 2 (11)

where a31 = sinθ cosφ, a32 = sinθ sinφ, and a33 = cosθ are
elements of A. The values of D⊥, D||, θ, and φ are deter-
mined by nonlinear least-squares optimization. For a
spherical top, D = DisoE and Eq. 9 reduces to

Di = Diso (12)

The least-squares estimator for Diso is the weighted mean
of the Di. As in the direct R2/R1 fitting approach, χ2- and
F-statistics are used to evaluate the significance of the
isotropic, axial, and anisotropic diffusion models (vide
infra).

In the principal axis system of the diffusion tensor,
Q12 = Q13 = Q23 = 0 and Eq. 10 reduces to

Di = Qxx + Qyy + Qzzx̃2
i ỹ2

i z̃2
i

= Diso − (Dxx−Dyy){Y2
2( , )+Y2

−2( , )} / (24)1/2 (13)θ̃i φ̃i θ̃i φ̃i

− Y2
0( )(2Dzz−Dxx−Dyy) / 6θ̃i

where Diso = Trace{D}/3, Y2
0(θ) = (3cos2θ −1)/2 and Y2

±2(θ,φ)
= (3/8)1/2 sin2θ exp(±2iφ) are modified spherical harmonic
functions (Brink and Satchler, 1993), and { , } defineθ̃i φ̃i

the orientation of the bond vector in the principal axis
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frame. For axial symmetry, Eq. 13 reduces to
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Fig. 1. Fractional errors in Diso (solid lines) and D|| /D⊥ (dashed lines) determined using the local diffusion approximation are plotted as a function
of the actual value of D|| /D⊥. The results are shown for actual values of Diso equal to 4.2 × 107 s−1 (thin lines) and 1.1 × 107 s−1 (thick lines).

Di = Diso − Y2
0( ) (D||−D⊥) / 3 (14)θ̃i

which provides a straightforward method to evaluate the
distribution of bond vector orientations in the diffusion
frame after the analysis has been performed. A similar
diagnostic relationship can be derived for the direct R2/R1

fitting approach in the limit that ωX/(6Diso) >> 1:

R2i /R1i = (R2i/R1i)iso{1 + 2Y2
0( ) (D|| /D⊥−1)/3} (15)θ̃i

where (R2i/R1i)iso is the result for a spherical top with Diso =
(D||+2D⊥)/3.

Direct fitting of the R2/R1 ratios is awkward to apply
if measurements have been made for different nuclear
species or magnetic field strengths because the spectral
density functions (Eqs. 4, 7, and 8) appearing in Eq. 3
depend explicitly on the Larmor frequencies, ωH and ωX,
of the nuclear spins. The local diffusion approach formally
separates determination of the Di from the relaxation rate
constants from calculation of the diffusion tensor from the
Di. Thus, data acquired for different nuclear species or at
multiple magnetic field strengths can be analyzed simulta-
neously in a straightforward fashion: the Di are calculated
separately for each set of relaxation rate constants, the ei

are determined for each bond vector, and the pooled set
of {Di,ei} is used to calculate the diffusion tensor.

Experimental

Atomic coordinates for human G-CSF (Protein Data-
bank (PDB) entry 1rhg) (Hill et al., 1993) and human

ubiquitin (PDB entry 1ubq) (Vijay-Kumar et al., 1987)
were obtained from X-ray crystallographic structures.
Atomic coordinates for bovine calbindin D9k were ob-
tained from the X-ray crystallographic structure of the
major conformer (PDB entry 4icb) (Svensson et al., 1992),
from the ensemble of 32 conformations for the Pro43 →
Gly mutant of bovine calbindin D9k derived from NMR
spectroscopy (PDB entry 2bcb) (Kördel et al., 1993), and
from the energy-minimized average structure of the Pro43

→ Gly mutant of bovine calbindin D9k (PDB entry 2bca)
(Kördel et al., 1993). The X-ray crystallographic structure
was superposed on the minimized average NMR structure
using the Cα coordinates for residues in α-helices. The
root mean square deviation between the Cα positions after
superposition was 0.86 Å. Hydrogen atoms were built
into the crystal structures using the program INSIGHT
II (Molecular Simulations Inc.) by assuming ionization
states appropriate for the pH at which the protein crystal
structure was obtained (pH 8.7 for calbindin D9k, pH 3.5
for G-CSF, and pH 5.8 for ubiquitin).

15N R1 and R2 relaxation rate constants were taken
from Tjandra et al. (1995) for human ubiquitin, from
Zink et al. (1994) for human G-CSF, and from Kördel et
al. (1992) for calbindin D9k.

13Cα R1 and R2 relaxation rate constants were measured
for calbindin D9k using a protein sample that was 15%
randomly fractionally enriched with 13C. Isotopically
enriched calbindin D9k was produced biosynthetically
using 15% randomly 13C enriched glucose as the sole
carbon source. Relaxation measurements were performed
at a 1H frequency of 500.13 MHz and a temperature of
300 K using a Bruker AMX500 NMR spectrometer. The
pulse sequences utilized have been described elsewhere
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(Skelton et al., 1993). The sample was 1.0 mM calbindin

TABLE 1
DIFFUSION PARAMETERS FOR CALBINDIN D9k FROM 15N RELAXATIONa

Tensor Diso (10−7 s−1) 2Dzz /(Dxx+Dyy) Dxx /Dyy θ (rad)b φ (rad)b ψ (rad)b χ2 Fc

Isotropicd 3.91 ± 0.01 0.00 − 0.00 − 0.00 − 0.00 − −0.00 − 179 0−
Axiale 3.92 ± 0.01 1.08 ± 0.01 0.00 − 1.21 ± 0.09 0.18 ± 0.10 −0.00 − 127 7.62
Anisotropic 3.93 ± 0.01 1.08 ± 0.01 1.04 ± 0.02 1.19 ± 0.36 3.04 ± 0.14 −0.18 ± 0.20 122 0.95

a Values of Di for 60 residues were fit using the local diffusion approximation.
b The angles θ, φ, and ψ define the orientation of the diffusion tensor with respect to the coordinate frame of the X-ray crystallographic structure

of the major form of calbindin D9k. The structural coordinates obtained from the PDB coordinate file 4icb were superposed on the minimized
mean NMR structure (2bca) using the coordinates of the Cα spins in α-helical residues.

c The F-test indicates that the axially symmetric model is a significant improvement over the isotropic model (p = 2.3 × 10−4). The anisotropic model
is not a significant improvement over the axially symmetric model (p = 0.40).

d Diso = Dxx = Dyy = Dzz.
e D|| = Dzz, D⊥ = Dxx = Dyy, Diso = (D|| +2D⊥)/3, D|| /D⊥ = 2Dzz /(Dxx+Dyy).

D9k in 100% D2O, pH 5.5 (uncorrected pH meter read-
ing). The R1 measurements were performed using relax-
ation delays of 0.010 s (×2), 0.062 s, 0.115 s, 0.194 s,
0.272 s, 0.404 s, 0.535 s, 0.797 s, 1.059 s, 2.109 s (×2),
where the notation ×2 indicates that a duplicate data set
was acquired for the indicated time point. The R2 measure-
ments were performed using relaxation delays of 0.004 s
(×2), 0.016 s, 0.030 s (×2), 0.050 s, 0.074 s (×2), 0.090 s,
0.108 s, 0.150 s, 0.250 s. Rate constants and uncertainties
were obtained by nonlinear least-squares fitting as de-
scribed elsewhere (Mandel et al., 1995).

Relaxation data for residues exhibiting large-amplitude
intramolecular motions were not included in the diffusion
tensor calculations. Residues exhibiting significant inter-
nal motions on ps–ns time scales were recognized by
significant reductions in the {1H}-X NOE compared with
the average result for the protein; residues exhibiting
significant chemical exchange on µs–ms time scales were
recognized by significant increases in the values of R2

compared with the average result for the protein (Tjandra
et al., 1995). Residues exhibiting increased internal mo-
tions also can be recognized by an examination of the
generalized order parameters and phenomenological chem-
ical exchange rate constants after analysis of the relax-
ation data using the model-free formalism (Lipari and
Szabo, 1982a,b; Clore et al., 1990). For calbindin D9k, a
total of 60 residues were included in the analysis of the
15N relaxation data; the 15N spins of residues 2–3, 40–45,
and 73–75 exhibited increased internal motions, the 15N
resonance for residue 1 could not be observed, and the
protein contains three proline residues. A total of 47
residues were included in the analysis of the 13C relaxation
data; the 13Cα spins of residues 1–3, 19, 24, 38–44, 47, and
70–75 exhibited increased internal motions and the 13Cα

resonances for residues 7, 8, 18, 28, 33, 49, 57, 59, and 66
could not be quantified due to resonance overlap. The
average relative uncertainties in the R2/R1 ratios were
1.5% for 15N and 3.3% for 13Cα. For G-CSF, the 15N
relaxation rates were included in the analysis only for
residues 11–39 in helix A, residues 71–91 in helix B, resi-

dues 100–123 in helix C, and residues 143–172 in helix D.
Because the published 15N relaxation rates did not include
experimental uncertainties (beyond a statement of vari-
ation less than 10%), the experimental uncertainties in the
R2/R1 ratios were set to 0.42 (an average relative uncer-
tainty of 2.5%). The Cα-Hα bond vectors for all residues
in the α-helices were used for model calculations. Analy-
sis of the 15N relaxation rate constants for ubiquitin was
performed for the same set of 55 residues used by Tjan-
dra et al. (1995); a relative uncertainty in the R2/R1 ratios
of 0.78% was derived from the reported average uncer-
tainties in the R1 and R2 measurements (Tjandra et al.,
1995). The Cα-Hα bond vectors for all residues in the α-
helices and β-sheet were used for model calculations.

Local diffusion constants, Di = (6τci)
−1, were calculated

from the R2i/R1i ratios using Brent’s method (Press et al.,
1992) to solve Eqs. 3 and 8. The values of Di derived
from 13C relaxation data were scaled empirically by the
average ratio of the diffusion constants derived from 15N
and 13C relaxation measurements to account for viscosity
differences between H2O and D2O; the empirical viscosity
scaling factor of 17% is slightly smaller than the literature
value of 22% (Viswanath and Natarajan, 1989).

Least-squares fits of Di to Eqs. 10–12 to determine the
diffusion tensor for asymmetric, symmetric, and spherical
rotators, respectively, were performed as described above
using ei derived from structural coordinates. Equation 10
was solved for the elements of the anisotropic diffusion
tensor by singular value decomposition; uncertainties in
parameter estimates were determined by Monte Carlo
simulations (Press et al., 1992). Nonlinear least-squares
optimization of the axially symmetric diffusion tensor,
Eq. 11, was performed using the Levenberg–Marquardt
algorithm and uncertainties in parameter estimates were
obtained from the covariance matrix (Press et al., 1992)
or from jackknife simulations (Mosteller and Tukey,
1977). The weighted mean and the standard error in the
mean were used to determine Diso for isotropic diffusion
from Eq. 12. For comparison, least-squares fits of the
R2i/R1i ratios to Eq. 3 using Eqs. 7 and 8 for axially sym-
metric and isotropic diffusion tensors, respectively, were
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performed as described above using the Levenberg–Mar-

TABLE 2
DIFFUSION PARAMETERS FOR G-CSF FROM 15N RELAXATIONa

Tensor Diso (10−7 s−1) 2Dzz /(Dxx+Dyy) Dxx /Dyy θ (rad)b φ (rad)b ψ (rad)b χ2 Fc

Isotropicd 1.28 ± 0.01 0.00 − 0.00 − 0.00 − −0.00 − 0.00 − 715 0−
Axiald 1.34 ± 0.01 1.31 ± 0.02 0.00 − 1.34 ± 0.03 −2.95 ± 0.04 0.00 − 504 4.59
Anisotropic 1.35 ± 0.01 1.35 ± 0.03 1.20 ± 0.07 1.76 ± 0.09 −0.31 ± 0.70 0.14 ± 0.10 491 0.39

a Values of Di for 37 residues were fit using the local diffusion approximation.
b The angles θ, φ, and ψ define the orientation of the diffusion tensor with respect to the coordinate frame of the X-ray crystallographic structure

of G-CSF obtained from the PDB coordinate file 1rhg.
c The F-test indicates that the axially symmetric model is a significant improvement over the isotropic model (p = 8.6 × 10−3). The anisotropic model

is not a significant improvement over the axially symmetric model (p = 0.68).
d See Table 1.

TABLE 3
DIFFUSION PARAMETERS FOR UBIQUITIN FROM15N RELAXATIONa

Tensor Diso (10−7 s−1) 2Dzz /(Dxx+Dyy) Dxx /Dyy θ (rad)b φ (rad)b ψ (rad)b χ2 Fc

Isotropicd 4.05 ± 0.01 0.00 − 0.00 − 0.00 − 0.00 − 0.00 − 1051 00−
Axiald 4.01 ± 0.01 1.15 ± 0.01 0.00 − 0.71 ± 0.03 0.81 ± 0.05 0.00 − 0638 11.00
Anisotropic 4.02 ± 0.01 1.16 ± 0.01 1.04 ± 0.01 0.70 ± 0.17 0.83 ± 0.14 0.02 ± 0.10 0609 01.09

a Values of Di for 55 residues were fit using the local diffusion approach.
b The angles θ, φ, and ψ define the orientation of the diffusion tensor with respect to the coordinate frame of the X-ray crystallographic structure

of ubiquitin obtained from the PDB coordinate file 1ubq.
c The F-test indicates that the axially symmetric model is a significant improvement over the isotropic model (p = 1.1 × 10−5). The anisotropic model

is not a significant improvement over the axially symmetric model (p = 0.34).
d See Table 1.

quardt algorithm for least-squares optimization (Press et
al., 1992). Uncertainties in parameter estimates were
obtained from the covariance matrix (Press et al., 1992).

For N spins and m fitted parameters (m = 1, 4, and 6
for isotropic, axially symmetric, and anisotropic diffusion
models, respectively), the goodness-of-fit is measured by
the χ2-statistic:

( )χ σN m i i i
i

N

X X−
=

= −∑2 2 2
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16ˆ ( )

where N − m is the number of degrees of freedom, Xi = Di

or R2i /R1i as appropriate, is the corresponding fittedX̂i

value, and σi is the uncertainty in Xi. The reduced χ2-
statistic, χr

2 = χ2
N−m/(N−m), has an expectation value of

unity. The improvement in the statistical fit to the experi-
mental data afforded by a second diffusion model with
n > m parameters is tested using an F-statistic with n − m,
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Statistical significance of the test statistics is determined
by the p-value: the probability that the observed value of
the test statistic would be equaled or exceeded by random
chance. If p ≤ α, then the test statistic is significant at the
(1 − α)% confidence level (Devore, 1982).

In order to evaluate the performance of the local diffu-
sion formalism, selected values of Dxx, Dyy, and Dzz were
used to simulate R2i/R1i for randomly oriented N-H bond
vectors using Eqs. 3–8. In some instances, arbitrarily
chosen rotations were applied to the N-H bond vectors
after calculating R2i /R1i. Simulated values of Di were
calculated from the simulated R2i/R1i data, and the diffu-
sion tensor was calculated from the Di values and bond
vector orientations.

Results and Discussion

The approximations inherent in the local diffusion
formalism were examined by analyzing simulated data for
a symmetric top. As expected (Brüschweiler et al., 1995),
the local diffusion method is accurate, provided the de-
gree of rotational anisotropy is not large. As shown in
Fig. 1, the estimated value of D|| /D⊥ is always smaller
than the actual D|| /D⊥, and the errors in the calculated
D|| /D⊥ ratio are less than 10% for 0.65 << D||/D⊥ << 1.75.
Errors in the calculated value of Diso are less than 10%
over this range of anisotropies as well. The errors in the
estimated values of D|| /D⊥ and Diso are only weakly de-
pendent on the actual value of Diso. If desired, the smooth
functional relationship between the measured and actual
values of D|| /D⊥ and Diso can be used to obtain correction
factors for the measured parameters.

The results of the local diffusion analysis of the 15N
relaxation data for calbindin D9k, G-CSF, and ubiquitin
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are given in Tables 1, 2, and 3, respectively. In all three

TABLE 4
AXIALLY SYMMETRIC DIFFUSION PARAMETERS FROM ANALYSIS OF 15N R2/R1 RATIOSa

Protein Residuesb Diso (10−7 s−1)c D|| /D⊥ θ (rad)d φ (rad)d χ2 Fe

Calbindin D9k 60 3.95 ± 0.01 1.08 ± 0.01 1.24 ± 0.09 0.17 ± 0.09 130 07.76
G-CSF 37 1.36 ± 0.01 1.32 ± 0.02 1.34 ± 0.04 3.01 ± 0.04 559 04.46
Ubiquitin 55 4.05 ± 0.01 1.16 ± 0.01 0.68 ± 0.03 0.82 ± 0.05 663 10.02

a The diffusion tensor was obtained by direct analysis of the R2/R1 ratios.
b Number of residues used to determine the diffusion tensor.
c Diso = (D||+2D⊥)/3.
d The angles θ and φ define the orientation of the symmetry axis of the diffusion tensor relative to the coordinates of the X-ray crystallographic

structures of calbindin D9k (4icb), G-CSF (1rhg), and ubiquitin (1ubq).
e The F-statistic compares the quality of the fit for the axially symmetric tensor with that of the isotropic tensor. The axially symmetric model

is a significant improvement over the isotropic model for calbindin D9k (p = 2.0 × 10−4), G-CSF (p = 9.8 × 10−3), and ubiquitin (p = 2.7 × 10−5).

TABLE 5
STRUCTURE DEPENDENCE OF AXIALLY SYMMETRIC DIFFUSION PARAMETERS FOR CALBINDIN D9k

a

Structure Diso (10−7 s−1)b D|| /D⊥ θ (rad)c φ (rad)c χ2 Fd

NMR averagee 3.93 ± 0.01 1.07 ± 0.01 1.14 ± 0.10 0.17 ± 0.11 140 5.18
NMR ensemblef 3.92 ± 0.01 (0.004) 1.08 ± 0.01 (0.006) 1.27 ± 0.09 (0.05) 0.16 ± 0.10 (0.04) 133 6.38
X-rayg 3.92 ± 0.01 1.08 ± 0.01 1.21 ± 0.09 0.18 ± 0.10 127 7.62

a Values of Di for 60 residues were fit using the local diffusion approach.
b Diso = (D||+2D⊥)/3.
c The angles θ and φ define the orientation of the symmetry axis of the diffusion tensor.
d The F-statistic compares the quality of the fit for the axially symmetric tensor with that of the isotropic tensor. The axially symmetric model

is a significant improvement over the isotropic model in all three instances.
e The NMR average structure of the Pro43 → Gly mutant was obtained from the coordinate file 2bca.
f The ensemble of 32 NMR solution structures of the Pro43 → Gly mutant was obtained from the coordinate file 2bcb. The weighted mean values

and uncertainties from 32 individual fits are shown. The values in parentheses are the sample deviations calculated over the ensemble.
g The X-ray crystallographic structure of wild-type calbindin D9k was obtained from coordinate file 4icb. The coordinates for the major conformer

were utilized. The structural coordinates were superposed on the minimized mean NMR structure (2bca) using the coordinates of the Cα spins
in α-helical residues.

cases, the F-statistic indicates that the relaxation is best
described using an axially symmetric diffusion tensor. For
all three proteins, D|| /D⊥ < 1.4 and the local diffusion
approximation is expected to be highly accurate. Table 4
lists the results of the direct R2/R1 calculations, assuming
an axially symmetric diffusion tensor for calbindin D9k,
G-CSF, and ubiquitin. The results of the local diffusion
and direct R2/R1 analyses agree within experimental un-
certainties. In all cases, the values of χ2 are significantly
larger than expected statistically, and jackknife simula-
tions (Mosteller and Tukey, 1977) suggest that the report-
ed uncertainties in the results consequently may be under-
estimated by 30–100% for calbindin D9k, 300–400% for G-
CSF, and 300–400% for ubiquitin. Similar increases in
parameter uncertainties are obtained by scaling the ex-
perimental uncertainties in the Di to yield χr

2 = 1 (Press et
al., 1992); for example, the uncertainties in Diso, D|| /D⊥, θ,
and φ are increased to 0.03, 0.09, 0.14, and 0.15, respect-
ively, for G-CSF. The F-statistic is a ratio of χ2-statistics
and is unaffected by scaling of the experimental uncer-
tainties.

The sensitivity of the diffusion tensor to variations in
the orientations of the N-H bond vectors was examined
by calculating the axially symmetric diffusion tensor using

different structural models of calbindin D9k. Table 5 lists
results obtained using atomic coordinates derived from
the X-ray crystallographic structure, results obtained
using atomic coordinates derived from the minimized
average NMR solution structure, and results obtained by
averaging calculations performed for each member of the
ensemble of 32 NMR solution structures. The diffusion
tensors derived using the different sets of coordinates are
statistically indistinguishable. Within the ensemble of 32
solution structures, the χ2 values range from 126 to 155,
and the F-statistics range from 4.23 to 9.43. The ranges
of χ2 and F encompass the values obtained using the X-
ray crystallographic structure and the minimized average
NMR structure. The sample deviations of the elements of
the diffusion tensor and rotation angles, calculated from
the fitted values for each member of the ensemble, are
approximately one-half of the weighted mean uncertain-
ties in the parameters, calculated from the covariance
matrix for each member of the ensemble. By extension,
approximately one-half of the uncertainty in the measured
parameters may be attributable to coordinate uncertain-
ties.

For accurate assessment of the diffusion tensor, the
orientations of the bond vectors must be distributed over
the surface of a sphere; in particular, as shown by Eqs. 13
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and 14, the bond vector orientations should sample the
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Fig. 2. Axially symmetric diffusion for calbindin D9k. The values of Di obtained from 15N (3) and 13C (1) relaxation experiments are shown as
functions of Y2

0(θ). The values of θi were obtained after rotating the structural coordinates to the principal axis frame of the diffusion tensor using
the transformation matrix obtained from the local diffusion analysis. The solid line is the simultaneous least-squares fit of Eq. 14 to the experimen-
tal data.
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Fig. 3. Axially symmetric diffusion for G-CSF. The Di values obtained from 15N (3) relaxation experiments are shown as functions of Y2
0(θ). The

values of θi were obtained after rotating the structural coordinates to the principal axis frame of the diffusion tensor using the transformation
matrix obtained from the local diffusion analysis. The solid line is the least-squares fit of Eq. 14 to the experimental data. The predominance of
values of Y2

0(θ) > 0 stems from the four-helix bundle topology of G-CSF. The theoretical values of Di obtainable from 13C (1) relaxation measure-
ments are shown as functions of Y2

0(θ) for residues located within secondary structure.

full range of the spherical harmonic functions. Figures 2,
3, and 4 plot Di derived from the 15N relaxation data
versus Y2

0 for the N-H bond vectors. These results(θ̃i)
indicate the three possible orientational distributions
encountered in proteins. For calbindin D9k, N-H bond

vector orientations are distributed reasonably well over
the full range −0.5 ≤ Y2

0 ≤ 1.0. In contrast, for G-CSF,(θ̃i)
the N-H bond vectors are preferentially oriented along
the axes of the helices. Consequently, the majority of
bond vectors have 0 ≤ Y2

0 ≤ 1.0, corresponding to an(θ̃i)
angular range 0.955 rad ≥ θ ≥ 0 rad or π − 0.955 rad ≤ θ ≤ π.
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For ubiquitin, the majority of N-H bond vectors have
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Fig. 4. Axially symmetric diffusion for ubiquitin. The Di values obtained from 15N (3) relaxation experiments are shown as functions of Y2
0(θ).

The values of θi were obtained after rotating the structural coordinates to the principal axis frame of the diffusion tensor using the transformation
matrix obtained from the local diffusion analysis. The solid line is the least-squares fit of Eq. 14 to the experimental data. The predominance of
values of Y2

0(θ) < 0 stems from the orientation of the α-helices and β-sheets with respect to the unique diffusion axis. The theoretical values of Di

obtainable from 13C (1) relaxation measurements are shown as functions of Y2
0(θ) for residues located within secondary structure.

TABLE 6
DIFFUSION PARAMETERS FOR CALBINDIN D9k FROM 13C RELAXATIONa

Tensor Diso (10−7 s−1) 2Dzz /(Dxx+Dyy) Dxx /Dyy θ (rad)b φ (rad)b ψ (rad)b χ2 Fc

Isotropicd 3.36 ± 0.01 0.00 − 0.00 − 0.00 − −0.00 − −0.00 − 143
Axiald 3.35 ± 0.01 1.10 ± 0.02 0.00 − 1.40 ± 0.10 −0.20 ± 0.10 −0.00 − 112 3.84
Anisotropic 3.35 ± 0.01 1.10 ± 0.02 1.01 ± 0.01 1.75 ± 0.20 −0.21 ± 0.22 −0.27 ± 0.24 112 0.0

a Values of Di for 47 residues were fit using the local diffusion approximation. Results are not scaled for differences in viscosity between D2O and
H2O; Diso should be multiplied by 1.17 for comparison with results in H2O.

b The angles θ, φ, and ψ define the orientation of the diffusion tensor with respect to the coordinate frame of the X-ray crystallographic structure
of the major form of calbindin D9k. The structural coordinates obtained from the PDB coordinate file 4icb were superposed on the minimized
mean NMR structure (2bca) using the coordinates of the Cα spins in α-helical residues.

e The F-test indicates that the axially symmetric model is a significant improvement over the isotropic model (p = 0.016). The anisotropic model
is not a significant improvement over the axially symmetric model.

d See Table 1.

−0.5 ≤ Y2
0(θ) ≤ 0, corresponding to an angular range 0.955

rad ≤ θ ≤ π − 0.955 rad, and are nearly perpendicular to the
unique axis of the diffusion tensor. The importance of the
distribution of orientations of the bond vectors is illus-
trated by the following simple calculations. For G-CSF,
if the six N-H bond vectors with Y2

0 ≤ 0 are excluded(θ̃i)
from the analysis, the uncertainties in the measured para-
meters for the axially symmetric diffusion tensor increase,
and the F-statistic comparing the axially symmetric and
isotropic models is reduced from 4.59 (p = 8.6 × 10−3) to
2.21 (p = 0.11). In this case, the axially symmetric and
isotropic models can no longer be distinguished statistical-
ly. For ubiquitin, if the eight N-H vectors with Y2

0 ≥ 0(θ̃i)
are excluded from the analysis, the uncertainties in the

measured parameters for the axially symmetric diffusion
tensor increase, and the F-statistic comparing the axially
symmetric and isotropic models is reduced from 11.00 (p =
1.1 × 10−5) to 3.79 (p = 0.017).

The distribution of bond vector orientations is im-
proved by the inclusion of data for Cα-Hα bond vectors
together with data for N-H bond vectors. This advantage
was demonstrated empirically for calbindin D9k, by per-
forming the local diffusion analysis with separate 13C and
15N data sets and with a combined 13C/15N data set. The
results are shown in Tables 1, 6, and 7 for 13C, 15N, and
13C/15N data sets, respectively, using coordinates derived
from the X-ray crystallographic structure of calbindin
D9k. The values of the 13Cα relaxation rate constants used
in the analysis are given in Table 8. A comparison of the
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results in Tables 1, 6, and 7 shows the improvement af-

TABLE 7
DIFFUSION PARAMETERS FOR CALBINDIN D9k FROM COMBINED 13C AND 15N RELAXATIONa

Tensor Diso (10−7 s−1) 2Dzz /(Dxx+Dyy) Dxx /Dyy θ (rad)b φ (rad)b ψ (rad)b χ2 Fc

Isotropicd 3.92 ± 0.01 0.00 − 0.00 − 0.00 − −0.00 − −0.00 − 333 0−
Axiald 3.93 ± 0.01 1.08 ± 0.01 0.00 − 1.25 ± 0.06 −0.04 ± 0.07 −0.00 − 251 11.2
Anisotropic 3.93 ± 0.01 1.08 ± 0.01 1.03 ± 0.01 1.25 ± 0.31 −3.14 ± 0.08 −0.08 ± 0.14 247 00.92

a Values of Di for 108 bond vectors were fit using the local diffusion approximation. Values of Di for 13Cα-Hα bond vectors were multiplied by
1.17 prior to analysis to account for the viscosity difference between H2O and D2O.

b See Table 6.
c The F-test indicates that the axially symmetric model is a significant improvement over the isotropic model (p = 2.1 × 10−6). The anisotropic model

is not a significant improvement over the axially symmetric model (p = 0.40).
d See Table 1.

TABLE 8
CALBINDIN D9k

13C RELAXATION PARAMETERS

Residue R1 (s−1) R2 (s−1) Residue R1 (s−1) R2 (s−1)

K1 2.44 ± 0.06 20.6 ± 0.5 S38 2.12 ± 0.05 16.5 ± 0.5
S2 2.26 ± 0.04 17.9 ± 0.2 L39 2.23 ± 0.04 19.9 ± 0.3
P3 2.07 ± 0.02 19.3 ± 0.3 L40 2.33 ± 0.03 17.4 ± 0.4
E4 2.11 ± 0.03 20.5 ± 0.3 K41 2.41 ± 0.02 14.7 ± 0.3
E5 2.21 ± 0.04 20.6 ± 0.3 S44 2.43 ± 0.02 16.1 ± 0.4
L6 2.16 ± 0.04 20.1 ± 0.4 T45 2.21 ± 0.06 22.4 ± 0.3
I9 2.04 ± 0.05 20.6 ± 0.3 L46 2.07 ± 0.07 22.6 ± 0.5
F10 1.95 ± 0.04 20.9 ± 0.6 D47 2.10 ± 0.05 24.0 ± 0.5
E11 2.02 ± 0.04 21.6 ± 0.4 E48 2.07 ± 0.07 21.2 ± 0.3
K12 1.96 ± 0.05 20.4 ± 0.2 F50 1.95 ± 0.04 21.1 ± 0.5
Y13 2.08 ± 0.03 22.0 ± 0.4 E51 2.15 ± 0.04 20.1 ± 0.8
A14 1.94 ± 0.03 21.4 ± 0.4 E52 2.00 ± 0.04 20.6 ± 0.3
A15 1.87 ± 0.06 18.4 ± 0.3 L53 2.04 ± 0.05 23.0 ± 1.0
K16 2.08 ± 0.03 20.0 ± 0.3 D54 1.94 ± 0.05 20.7 ± 0.5
E17 2.06 ± 0.06 20.4 ± 0.5 K55 1.98 ± 0.05 20.0 ± 0.3
D19 1.97 ± 0.03 23.5 ± 0.5 N56 2.02 ± 0.02 21.2 ± 0.3
P20 1.95 ± 0.03 21.1 ± 0.4 D58 1.99 ± 0.05 21.4 ± 0.3
N21 1.91 ± 0.04 20.7 ± 0.3 E60 2.13 ± 0.03 20.0 ± 0.4
Q22 2.01 ± 0.06 20.1 ± 1.0 V61 2.11 ± 0.04 20.0 ± 1.1
L23 2.16 ± 0.05 21.8 ± 0.7 S62 2.09 ± 0.06 22.2 ± 0.5
S24 2.07 ± 0.04 24.3 ± 0.7 F63 2.05 ± 0.04 20.9 ± 0.5
K25 2.02 ± 0.03 20.5 ± 0.4 E64 2.00 ± 0.03 20.9 ± 0.3
E26 2.04 ± 0.03 21.4 ± 0.3 E65 2.09 ± 0.04 21.5 ± 0.4
E27 1.94 ± 0.07 20.2 ± 0.8 Q67 2.04 ± 0.03 20.6 ± 0.3
K29 2.06 ± 0.04 22.1 ± 0.5 V68 2.05 ± 0.05 19.6 ± 0.3
L30 2.09 ± 0.04 20.1 ± 0.4 L69 2.12 ± 0.05 20.4 ± 0.5
L31 2.02 ± 0.04 22.6 ± 0.5 V70 2.13 ± 0.05 17.8 ± 0.3
L32 1.96 ± 0.07 21.1 ± 0.7 K71 2.11 ± 0.07 18.8 ± 0.5
T34 2.05 ± 0.03 20.8 ± 0.8 K72 2.56 ± 0.09 16.2 ± 0.3
E35 2.01 ± 0.04 20.9 ± 0.4 I73 2.43 ± 0.02 15.6 ± 0.2
F36 1.98 ± 0.05 20.9 ± 0.5 S74 2.61 ± 0.04 12.1 ± 0.1
P37 1.86 ± 0.03 20.4 ± 0.6

forded by the simultaneous analysis of 13C and 15N data.
The distribution of Cα-Hα bond vectors is illustrated in
Fig. 2. The statistical significance of the axially symmetric
diffusion model, compared with the isotropic model, is
improved in the simultaneous analysis: the p-value for the
F-statistic is reduced from 5.0 × 10−3 for the 15N analysis
to 1.7 × 10−5 for the combined 13C/15N analysis. Because
the N-H bond vectors are distributed reasonably uniform-
ly in calbindin D9k, much of the improvement in the pre-
cision of the results arises from the increased number of
bond vectors available for analysis. To further demon-
strate the advantage of combining 13C data with 15N data
for proteins with less ideal distributions of N-H bond
vectors, the diffusion tensor and transformation matrix
determined from 15N relaxation measurements for G-CSF
and ubiquitin were used to calculate theoretical values of
Di and θi for the Cα-Hα bond vectors for residues within
stable secondary structures, as noted above. The results
are overlaid on the distributions of Di and θi for the N-H
bond vectors in Figs. 3 and 4. The improved distribution
of bond vector orientations is most striking for G-CSF
because the angle between the two bond vectors (not the
dihedral angle) is 0.98 rad (56°) for an α-helix (the corre-
sponding angle is 2.72 rad (156°) for a β-sheet).

A close inspection of the results in Tables 1, 6, and 7
for 15N, 13Cα, and combined 15N and 13Cα analyses indi-
cates that the D|| /D⊥ ratios are in better agreement than
θ or φ (the Diso values are related by the empirical scaling
for viscosity differences). For example, the angle between
the symmetry axes of the diffusion tensors determined
from separate analyses of 15N and 13Cα relaxation data is
0.40 rad (23°), as determined from the scalar product of
unit vectors along the symmetry axes. Similar calculations
(not shown) yield 0.43 rad (25°) and 0.29 rad (17°) for
separate analyses of 15N and 13Cα relaxation data using
the minimized mean NMR solution structure and the
ensemble of 32 NMR solution structures, respectively.
The orientations of the symmetry axes of the diffusion
tensors are illustrated in Fig. 5. As noted above, the large
χ2 values obtained in all analyses suggest that the uncer-
tainties in the fitted parameters are underestimated; con-

sequently, the variation in orientation of the symmetry
axes of diffusion tensors calculated separately for 15N and
13Cα may provide a more realistic estimate of the precision
of the methods. The difference in orientations also is a
consequence of the shallow χ2 response surface for cal-
bindin D9k that results from the small degree of aniso-
tropy of the molecule and the larger uncertainties in the
13Cα relaxation data (1.9% average relative uncertainty in
τci for 13Cα data compared to 1.4% for 15N data). If the
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13Cα data are analyzed by fixing the values of θ and φ at

b ad cef

Fig. 5. Symmetry axis orientations for calbindin D9k. Unit vectors
along the symmetry axes of the axially symmetric rotational diffusion
tensors of calbindin D9k are shown for analyses performed using (a)
X-ray structure and 15N relaxation data, (b) X-ray structure and 13Cα

relaxation data, (c) minimized average NMR solution structure and
15N relaxation data, (d) minimized average NMR solution structure
and 13Cα relaxation data, (e) ensemble of 32 NMR solution structures
and 15N relaxation data, and (f) ensemble of 32 NMR solution struc-
tures and 13Cα relaxation data. The (unlabeled) z-axis is taken as the
direction of the symmetry axis of the diffusion tensor calculated using
the X-ray structure and combined 15N and 13Cα relaxation data. The
projections of the unit vectors onto the transverse plane are drawn to
illustrate the orientations of the vectors. The angles between the unit
vectors and the z-axis are (a) 0.14 rad, (b) 0.28 rad, (c) 0.24 rad, (d)
0.26 rad, (e) 0.12 rad, and (f) 0.22 rad.

the values obtained from the 15N analysis, then the χ2-
statistic increases to 124, an increase of only 12, and the
degree of improvement compared to the isotropic model
is essentially unchanged (F = 6.91, p = 0.012) because the
number of fitted parameters is reduced by two.

The 15N NMR spectrum is usually better resolved than
the 13C NMR spectrum of proteins; consequently, as
observed for calbindin D9k, relaxation data suitable for
the diffusion tensor analysis may be available for a larger
number of 15N resonances than 13Cα resonances. In the
worst case, the distribution of orientations of the 13Cα-Hα

bond vectors for resolved, quantifiable, 13Cα spins might
not improve upon the distribution of 15N spins, in which
case the simultaneous analysis would be expected to im-
prove the precision, but not the accuracy, of the diffusion
tensor. Normally, structural coordinates are available
from X-ray or NMR experiments and the 15N and 13C
NMR spectra are assigned prior to collecting relaxation
data; therefore, the number of resolved resonances and
the distribution of the corresponding bond vectors can be
ascertained in advance.

Analysis of simulated relaxation data indicates that
anisotropic rotational diffusion can be detected with
Dxx/Dyy as small as 1.05 if the distribution of bond vec-
tors is uniform and if the uncertainties in the R2/R1 ratios
are ~1%. For example, 10 sets of R2/R1 relaxation data
for 50 randomly oriented bond vectors were simulated
and analyzed using Diso = 4.0 × 107 s−1, 2Dzz/(Dxx + Dyy) =
1.10, Dxx/Dyy = 1.05, and a random noise level of 1%. The
average F-statistic for the axially symmetric diffusion
model compared with the isotropic model was 33.6 (p =
1.2 × 10−11), and the F-statistic for the anisotropic diffu-
sion model compared with the axially symmetric diffusion
model was 5.83 (p = 5.7 × 10−3). In contrast, axially sym-
metric diffusion tensors provided statistically sufficient
descriptions of the overall rotational diffusion for each of
the three proteins studied. The proteins have fairly axially
symmetric structures as defined by the ratios of the prin-
cipal components of the inertia tensors for calbindin D9k

(1.00:0.874:0.814), G-CSF (1.00:0.976:0.397), and ubi-
quitin (1.00:0.904:0.636), and the results for the diffusion
tensors might not be unexpected. However, Escherichia
coli ribonuclease H has an asymmetric structure as de-
fined by the ratios of the principal components of the
inertia tensor (1.00:0.781:0.631), but analysis of 15N spin
relaxation data yields an axially symmetric diffusion
tensor nonetheless (Mandel et al., 1996). The failure to
observe statistically significant anisotropic diffusion ten-
sors stems from two causes. (i) As illustrated by the
above example, statistical improvement of the anisotropic
diffusion model compared to the axially symmetric model
frequently is smaller, and harder to detect statistically,
than the improvement of the axially symmetric model
compared to the isotropic model. (ii) The χ2 values for

the experimental data given in Tables 1–7 are larger than
expected statistically, which suggests that the measured
uncertainties in the relaxation data underestimate the true
uncertainties. As a result, the experimental Di values
deviate significantly from the expected linear relationship
in Figs. 2–4. An increased variation in the relaxation data
reduces the values of the F-statistics for both axially
symmetric and anisotropic diffusion models and renders
detecting a fully anisotropic diffusion tensor more diffi-
cult. For example, if the uncertainty in the R2/R1 ratios is
increased to 2% in the above simulation, then the F-stat-
istics for axially symmetric and anisotropic diffusion
models are reduced to 7.7 (p = 2.8 × 10−4) and 1.9 (p =
0.16), respectively. Additional sources of uncertainty in
the analysis can arise from variations in CSA values and
bond lengths for different N-H vectors in the molecule,
coordinate errors, and intramolecular dynamic processes
that contribute to R1 and R2 and affect Eq. 3. The robust
detection of the fully anisotropic rotational diffusion of
proteins by the methods outlined herein will require a
better understanding of the sources of variation in the
relaxation rate constants.
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Conclusions

A detailed knowledge of the hydrodynamic rotational
anisotropy of proteins is important for interpreting relax-
ation rate constants and constructing structural models of
anisotropic molecules (Barbato et al., 1992; Brüschweiler
et al., 1995). Rotational anisotropy can affect model
selection during the analysis of relaxation data using
model-free formalisms, can introduce spurious parame-
ters, and can bias optimized internal motional parameters
(Schurr et al., 1994; Mandel et al., 1996). The simulta-
neous analysis of 13C and 15N relaxation data reduces the
bias in the distribution of bond vector orientations used
to determine the diffusion tensor. The local diffusion
approach for determining the diffusion tensor (Brüsch-
weiler et al., 1995) is emphasized herein because this
method is particularly well suited to the analysis of relax-
ation data acquired for different nuclear species or for
different magnetic field strengths. The theoretical and
experimental methods described are expected to be widely
applicable to hydrodynamic studies of proteins and pro-
tein complexes.
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